3.765 \(\int \frac {1}{\sqrt {d x} (a^2+2 a b x^2+b^2 x^4)^{3/2}} \, dx\)

Optimal. Leaf size=460 \[ \frac {7 \sqrt {d x}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {21 \left (a+b x^2\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}+\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {21 \left (a+b x^2\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}+\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {21 \left (a+b x^2\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {21 \left (a+b x^2\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{32 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}} \]

[Out]

-21/64*(b*x^2+a)*arctan(1-b^(1/4)*2^(1/2)*(d*x)^(1/2)/a^(1/4)/d^(1/2))/a^(11/4)/b^(1/4)*2^(1/2)/d^(1/2)/((b*x^
2+a)^2)^(1/2)+21/64*(b*x^2+a)*arctan(1+b^(1/4)*2^(1/2)*(d*x)^(1/2)/a^(1/4)/d^(1/2))/a^(11/4)/b^(1/4)*2^(1/2)/d
^(1/2)/((b*x^2+a)^2)^(1/2)-21/128*(b*x^2+a)*ln(a^(1/2)*d^(1/2)+x*b^(1/2)*d^(1/2)-a^(1/4)*b^(1/4)*2^(1/2)*(d*x)
^(1/2))/a^(11/4)/b^(1/4)*2^(1/2)/d^(1/2)/((b*x^2+a)^2)^(1/2)+21/128*(b*x^2+a)*ln(a^(1/2)*d^(1/2)+x*b^(1/2)*d^(
1/2)+a^(1/4)*b^(1/4)*2^(1/2)*(d*x)^(1/2))/a^(11/4)/b^(1/4)*2^(1/2)/d^(1/2)/((b*x^2+a)^2)^(1/2)+7/16*(d*x)^(1/2
)/a^2/d/((b*x^2+a)^2)^(1/2)+1/4*(d*x)^(1/2)/a/d/(b*x^2+a)/((b*x^2+a)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.34, antiderivative size = 460, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {1112, 290, 329, 211, 1165, 628, 1162, 617, 204} \[ \frac {7 \sqrt {d x}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {21 \left (a+b x^2\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}+\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {21 \left (a+b x^2\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}+\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {21 \left (a+b x^2\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {21 \left (a+b x^2\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{32 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d*x]*(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2)),x]

[Out]

(7*Sqrt[d*x])/(16*a^2*d*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + Sqrt[d*x]/(4*a*d*(a + b*x^2)*Sqrt[a^2 + 2*a*b*x^2 +
 b^2*x^4]) - (21*(a + b*x^2)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(32*Sqrt[2]*a^(11/4)*b
^(1/4)*Sqrt[d]*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (21*(a + b*x^2)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1
/4)*Sqrt[d])])/(32*Sqrt[2]*a^(11/4)*b^(1/4)*Sqrt[d]*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) - (21*(a + b*x^2)*Log[Sqr
t[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(64*Sqrt[2]*a^(11/4)*b^(1/4)*Sqrt[d]*Sq
rt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (21*(a + b*x^2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x + Sqrt[2]*a^(1/4)*b^(
1/4)*Sqrt[d*x]])/(64*Sqrt[2]*a^(11/4)*b^(1/4)*Sqrt[d]*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1112

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + b*x^2 + c*x^4)^FracPa
rt[p]/(c^IntPart[p]*(b/2 + c*x^2)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^2)^(2*p), x], x] /; FreeQ[{a, b, c,
 d, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {d x} \left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx &=\frac {\left (b^2 \left (a b+b^2 x^2\right )\right ) \int \frac {1}{\sqrt {d x} \left (a b+b^2 x^2\right )^3} \, dx}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\\ &=\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (7 b \left (a b+b^2 x^2\right )\right ) \int \frac {1}{\sqrt {d x} \left (a b+b^2 x^2\right )^2} \, dx}{8 a \sqrt {a^2+2 a b x^2+b^2 x^4}}\\ &=\frac {7 \sqrt {d x}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (21 \left (a b+b^2 x^2\right )\right ) \int \frac {1}{\sqrt {d x} \left (a b+b^2 x^2\right )} \, dx}{32 a^2 \sqrt {a^2+2 a b x^2+b^2 x^4}}\\ &=\frac {7 \sqrt {d x}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{a b+\frac {b^2 x^4}{d^2}} \, dx,x,\sqrt {d x}\right )}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}\\ &=\frac {7 \sqrt {d x}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname {Subst}\left (\int \frac {\sqrt {a} d-\sqrt {b} x^2}{a b+\frac {b^2 x^4}{d^2}} \, dx,x,\sqrt {d x}\right )}{32 a^{5/2} d^2 \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname {Subst}\left (\int \frac {\sqrt {a} d+\sqrt {b} x^2}{a b+\frac {b^2 x^4}{d^2}} \, dx,x,\sqrt {d x}\right )}{32 a^{5/2} d^2 \sqrt {a^2+2 a b x^2+b^2 x^4}}\\ &=\frac {7 \sqrt {d x}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {d x}\right )}{64 a^{5/2} b^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {d x}\right )}{64 a^{5/2} b^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}}{\sqrt [4]{b}}+2 x}{-\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {d x}\right )}{64 \sqrt {2} a^{11/4} b^{5/4} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}}{\sqrt [4]{b}}-2 x}{-\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {d x}\right )}{64 \sqrt {2} a^{11/4} b^{5/4} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}\\ &=\frac {7 \sqrt {d x}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {21 \left (a+b x^2\right ) \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {21 \left (a+b x^2\right ) \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{11/4} b^{5/4} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {\left (21 \left (a b+b^2 x^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{11/4} b^{5/4} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}\\ &=\frac {7 \sqrt {d x}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {21 \left (a+b x^2\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {21 \left (a+b x^2\right ) \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {21 \left (a+b x^2\right ) \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {21 \left (a+b x^2\right ) \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{64 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 272, normalized size = 0.59 \[ \frac {\sqrt {x} \left (a+b x^2\right ) \left (56 a^{3/4} \sqrt [4]{b} \sqrt {x} \left (a+b x^2\right )+32 a^{7/4} \sqrt [4]{b} \sqrt {x}-21 \sqrt {2} \left (a+b x^2\right )^2 \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )+21 \sqrt {2} \left (a+b x^2\right )^2 \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )-42 \sqrt {2} \left (a+b x^2\right )^2 \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )+42 \sqrt {2} \left (a+b x^2\right )^2 \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )\right )}{128 a^{11/4} \sqrt [4]{b} \sqrt {d x} \left (\left (a+b x^2\right )^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[d*x]*(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2)),x]

[Out]

(Sqrt[x]*(a + b*x^2)*(32*a^(7/4)*b^(1/4)*Sqrt[x] + 56*a^(3/4)*b^(1/4)*Sqrt[x]*(a + b*x^2) - 42*Sqrt[2]*(a + b*
x^2)^2*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)] + 42*Sqrt[2]*(a + b*x^2)^2*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sq
rt[x])/a^(1/4)] - 21*Sqrt[2]*(a + b*x^2)^2*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x] + 21*Sqr
t[2]*(a + b*x^2)^2*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]))/(128*a^(11/4)*b^(1/4)*Sqrt[d*x
]*((a + b*x^2)^2)^(3/2))

________________________________________________________________________________________

fricas [A]  time = 1.08, size = 298, normalized size = 0.65 \[ \frac {84 \, {\left (a^{2} b^{2} d x^{4} + 2 \, a^{3} b d x^{2} + a^{4} d\right )} \left (-\frac {1}{a^{11} b d^{2}}\right )^{\frac {1}{4}} \arctan \left (\sqrt {a^{6} d^{2} \sqrt {-\frac {1}{a^{11} b d^{2}}} + d x} a^{8} b d \left (-\frac {1}{a^{11} b d^{2}}\right )^{\frac {3}{4}} - \sqrt {d x} a^{8} b d \left (-\frac {1}{a^{11} b d^{2}}\right )^{\frac {3}{4}}\right ) + 21 \, {\left (a^{2} b^{2} d x^{4} + 2 \, a^{3} b d x^{2} + a^{4} d\right )} \left (-\frac {1}{a^{11} b d^{2}}\right )^{\frac {1}{4}} \log \left (a^{3} d \left (-\frac {1}{a^{11} b d^{2}}\right )^{\frac {1}{4}} + \sqrt {d x}\right ) - 21 \, {\left (a^{2} b^{2} d x^{4} + 2 \, a^{3} b d x^{2} + a^{4} d\right )} \left (-\frac {1}{a^{11} b d^{2}}\right )^{\frac {1}{4}} \log \left (-a^{3} d \left (-\frac {1}{a^{11} b d^{2}}\right )^{\frac {1}{4}} + \sqrt {d x}\right ) + 4 \, {\left (7 \, b x^{2} + 11 \, a\right )} \sqrt {d x}}{64 \, {\left (a^{2} b^{2} d x^{4} + 2 \, a^{3} b d x^{2} + a^{4} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b^2*x^4+2*a*b*x^2+a^2)^(3/2)/(d*x)^(1/2),x, algorithm="fricas")

[Out]

1/64*(84*(a^2*b^2*d*x^4 + 2*a^3*b*d*x^2 + a^4*d)*(-1/(a^11*b*d^2))^(1/4)*arctan(sqrt(a^6*d^2*sqrt(-1/(a^11*b*d
^2)) + d*x)*a^8*b*d*(-1/(a^11*b*d^2))^(3/4) - sqrt(d*x)*a^8*b*d*(-1/(a^11*b*d^2))^(3/4)) + 21*(a^2*b^2*d*x^4 +
 2*a^3*b*d*x^2 + a^4*d)*(-1/(a^11*b*d^2))^(1/4)*log(a^3*d*(-1/(a^11*b*d^2))^(1/4) + sqrt(d*x)) - 21*(a^2*b^2*d
*x^4 + 2*a^3*b*d*x^2 + a^4*d)*(-1/(a^11*b*d^2))^(1/4)*log(-a^3*d*(-1/(a^11*b*d^2))^(1/4) + sqrt(d*x)) + 4*(7*b
*x^2 + 11*a)*sqrt(d*x))/(a^2*b^2*d*x^4 + 2*a^3*b*d*x^2 + a^4*d)

________________________________________________________________________________________

giac [A]  time = 0.29, size = 374, normalized size = 0.81 \[ \frac {7 \, \sqrt {d x} b d^{3} x^{2} + 11 \, \sqrt {d x} a d^{3}}{16 \, {\left (b d^{2} x^{2} + a d^{2}\right )}^{2} a^{2} \mathrm {sgn}\left (b d^{4} x^{2} + a d^{4}\right )} + \frac {21 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{64 \, a^{3} b d \mathrm {sgn}\left (b d^{4} x^{2} + a d^{4}\right )} + \frac {21 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{64 \, a^{3} b d \mathrm {sgn}\left (b d^{4} x^{2} + a d^{4}\right )} + \frac {21 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \log \left (d x + \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{128 \, a^{3} b d \mathrm {sgn}\left (b d^{4} x^{2} + a d^{4}\right )} - \frac {21 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \log \left (d x - \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{128 \, a^{3} b d \mathrm {sgn}\left (b d^{4} x^{2} + a d^{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b^2*x^4+2*a*b*x^2+a^2)^(3/2)/(d*x)^(1/2),x, algorithm="giac")

[Out]

1/16*(7*sqrt(d*x)*b*d^3*x^2 + 11*sqrt(d*x)*a*d^3)/((b*d^2*x^2 + a*d^2)^2*a^2*sgn(b*d^4*x^2 + a*d^4)) + 21/64*s
qrt(2)*(a*b^3*d^2)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) + 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^3*b*d*
sgn(b*d^4*x^2 + a*d^4)) + 21/64*sqrt(2)*(a*b^3*d^2)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) - 2*sqr
t(d*x))/(a*d^2/b)^(1/4))/(a^3*b*d*sgn(b*d^4*x^2 + a*d^4)) + 21/128*sqrt(2)*(a*b^3*d^2)^(1/4)*log(d*x + sqrt(2)
*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^3*b*d*sgn(b*d^4*x^2 + a*d^4)) - 21/128*sqrt(2)*(a*b^3*d^2)^(1/4
)*log(d*x - sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^3*b*d*sgn(b*d^4*x^2 + a*d^4))

________________________________________________________________________________________

maple [B]  time = 0.01, size = 638, normalized size = 1.39 \[ \frac {\left (42 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, b^{2} x^{4} \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )+42 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, b^{2} x^{4} \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )+21 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, b^{2} x^{4} \ln \left (\frac {d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+84 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, a b \,x^{2} \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )+84 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, a b \,x^{2} \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )+42 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, a b \,x^{2} \ln \left (\frac {d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+56 \sqrt {d x}\, a b \,x^{2}+42 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, a^{2} \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )+42 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, a^{2} \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )+21 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, a^{2} \ln \left (\frac {d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+88 \sqrt {d x}\, a^{2}\right ) \left (b \,x^{2}+a \right )}{128 \left (\left (b \,x^{2}+a \right )^{2}\right )^{\frac {3}{2}} a^{3} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b^2*x^4+2*a*b*x^2+a^2)^(3/2)/(d*x)^(1/2),x)

[Out]

1/128*(42*arctan((2^(1/2)*(d*x)^(1/2)+(a/b*d^2)^(1/4))/(a/b*d^2)^(1/4))*(a/b*d^2)^(1/4)*2^(1/2)*x^4*b^2+42*arc
tan((2^(1/2)*(d*x)^(1/2)-(a/b*d^2)^(1/4))/(a/b*d^2)^(1/4))*(a/b*d^2)^(1/4)*2^(1/2)*x^4*b^2+21*(a/b*d^2)^(1/4)*
2^(1/2)*ln((d*x+(a/b*d^2)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a/b*d^2)^(1/2))/(d*x-(a/b*d^2)^(1/4)*(d*x)^(1/2)*2^(1/2)+
(a/b*d^2)^(1/2)))*x^4*b^2+84*arctan((2^(1/2)*(d*x)^(1/2)+(a/b*d^2)^(1/4))/(a/b*d^2)^(1/4))*(a/b*d^2)^(1/4)*2^(
1/2)*x^2*a*b+84*arctan((2^(1/2)*(d*x)^(1/2)-(a/b*d^2)^(1/4))/(a/b*d^2)^(1/4))*(a/b*d^2)^(1/4)*2^(1/2)*x^2*a*b+
42*(a/b*d^2)^(1/4)*2^(1/2)*ln((d*x+(a/b*d^2)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a/b*d^2)^(1/2))/(d*x-(a/b*d^2)^(1/4)*(
d*x)^(1/2)*2^(1/2)+(a/b*d^2)^(1/2)))*x^2*a*b+42*arctan((2^(1/2)*(d*x)^(1/2)+(a/b*d^2)^(1/4))/(a/b*d^2)^(1/4))*
(a/b*d^2)^(1/4)*2^(1/2)*a^2+42*arctan((2^(1/2)*(d*x)^(1/2)-(a/b*d^2)^(1/4))/(a/b*d^2)^(1/4))*(a/b*d^2)^(1/4)*2
^(1/2)*a^2+21*(a/b*d^2)^(1/4)*2^(1/2)*ln((d*x+(a/b*d^2)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a/b*d^2)^(1/2))/(d*x-(a/b*d
^2)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a/b*d^2)^(1/2)))*a^2+56*(d*x)^(1/2)*x^2*a*b+88*(d*x)^(1/2)*a^2)/d*(b*x^2+a)/a^3
/((b*x^2+a)^2)^(3/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {b \sqrt {d} x^{\frac {5}{2}}}{2 \, {\left (a^{3} b d x^{2} + a^{4} d + {\left (a^{2} b^{2} d x^{2} + a^{3} b d\right )} x^{2}\right )}} + \frac {15 \, b x^{\frac {5}{2}} + 11 \, a \sqrt {x}}{16 \, {\left (a^{2} b^{2} \sqrt {d} x^{4} + 2 \, a^{3} b \sqrt {d} x^{2} + a^{4} \sqrt {d}\right )}} - \frac {11 \, {\left (\frac {2 \, \sqrt {2} \sqrt {d} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {2 \, \sqrt {2} \sqrt {d} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {a} \sqrt {\sqrt {a} \sqrt {b}}} + \frac {\sqrt {2} \sqrt {d} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {1}{4}}} - \frac {\sqrt {2} \sqrt {d} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {1}{4}}}\right )}}{128 \, a^{2} d} + \int \frac {1}{{\left (a^{2} b \sqrt {d} x^{2} + a^{3} \sqrt {d}\right )} \sqrt {x}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b^2*x^4+2*a*b*x^2+a^2)^(3/2)/(d*x)^(1/2),x, algorithm="maxima")

[Out]

-1/2*b*sqrt(d)*x^(5/2)/(a^3*b*d*x^2 + a^4*d + (a^2*b^2*d*x^2 + a^3*b*d)*x^2) + 1/16*(15*b*x^(5/2) + 11*a*sqrt(
x))/(a^2*b^2*sqrt(d)*x^4 + 2*a^3*b*sqrt(d)*x^2 + a^4*sqrt(d)) - 11/128*(2*sqrt(2)*sqrt(d)*arctan(1/2*sqrt(2)*(
sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(sqrt(a)*sqrt(b))) + 2*sqrt(2
)*sqrt(d)*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sq
rt(sqrt(a)*sqrt(b))) + sqrt(2)*sqrt(d)*log(sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(3/4)*b^(
1/4)) - sqrt(2)*sqrt(d)*log(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(3/4)*b^(1/4)))/(a^2*d)
 + integrate(1/((a^2*b*sqrt(d)*x^2 + a^3*sqrt(d))*sqrt(x)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {1}{\sqrt {d\,x}\,{\left (a^2+2\,a\,b\,x^2+b^2\,x^4\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((d*x)^(1/2)*(a^2 + b^2*x^4 + 2*a*b*x^2)^(3/2)),x)

[Out]

int(1/((d*x)^(1/2)*(a^2 + b^2*x^4 + 2*a*b*x^2)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {d x} \left (\left (a + b x^{2}\right )^{2}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b**2*x**4+2*a*b*x**2+a**2)**(3/2)/(d*x)**(1/2),x)

[Out]

Integral(1/(sqrt(d*x)*((a + b*x**2)**2)**(3/2)), x)

________________________________________________________________________________________